Read more: http://bangiz.blogspot.com/2013/12/Follow-Button.html#ixzz39wJQludp

suku banyak

Bentuk Umum:

an xn + an – 1 xn – 1 + an – 2 xn – 2 + … + … a2x2 + a1x + a0
n = derajat suku banyak
a0 = konstanta
an, an – 1, an – 2, … = koefisien dari xn, xn – 1, xn – 2, …

Pembagian Suku Banyak

Bentuk Umum
F(x) = P(x).H(x) + S(x)
F(x) = suku banyak
P(x) = pembagi
H(x) = hasil bagi
S(x) = sisa
Teorema Sisa:
Jika suatu suku banyak F(x) dibagi oleh (x – k) maka sisanya adalah F(k)
Jika pembagi berderajat n maka sisanya berderajat n – 1
Jika suku banyak berderajat m dan pembagi berderajat n, maka hasil baginya berderajat m – n
Cara Pembagian Suku Banyak
Contoh:
F(x) = 2x3 – 3x2 + x + 5 dibagi dengan P(x) = 2x2 – x – 1
1. Pembagian biasa

Jadi hasil baginya: H(X) = x – 1, sisanya S(x) = x + 4
2. Cara Horner/Skema
bisa digunakan untuk pembagi berderajat 1 atau pembagi yang dapat difaktorkan menjadi pembagi-pembagi berderajat 1
Cara:
  • Tulis koefisiennya saja → harus runtut dari koefisien xn, xn – 1, … hingga konstanta (jika ada variabel yang tidak ada, maka koefisiennya ditulis 0)
Contoh: untuk 4x3 – 1, koefisien-koefisiennya adalah 4, 0, 0, dan -1 (untuk x3, x2, x, dan konstanta)
  • Jika koefisien derajat tertinggi P(x) ≠ 1, maka hasil baginya harus dibagi dengan koefisien derajat tertinggi P(x)
  • Jika pembagi dapat difaktorkan, maka:
Jika pembagi dapat difaktorkan menjadi P1 dan P2, maka S(x) = P1.S2 + S1
Jika pembagi dapat difaktorkan menjadi P1, P2, P3, maka S(x) = P1.P2.S3 + P1.S2 + S1
Jika pembagi dapat difaktorkan menjadi P1, P2, P3, P4, maka S(x) = P1.P2.P3.S4 + P1.P2.S3 + P1.S2 + S1
dan seterusnya
Untuk soal di atas,
P(x) = 2x2 – x – 1 = (2x + 1)(x – 1)
P1: 2x + 1 = 0 → x = –½
P2: x – 1 = 0 → x = 1
Cara Hornernya:

H(x) = 1.x – 1 = x – 1
S(x) = P1.S2 + S1 = (2x + 1).1/2 + 7/2 = x + ½ + 7/2 = x + 4
3. Cara koefisien tak tentu
F(x) = P(x).H(x) + S(x)
Untuk soal di atas, karena F(x) berderajat 3 dan P(x) berderajat 2, maka
H(x) berderajat 3 – 2 = 1
S(x) berderajat 2 – 1 = 1
Jadi, misalkan H(x) = ax + b dan S(x) = cx + d
Maka:
2x3 – 3x2 + x + 5 = (2x2 – x – 1).(ax + b) + (cx + d)
Ruas kanan:
= 2ax3 + 2bx2 – ax2 – bx – ax – b + cx + d
= 2ax3 + (2b – a)x2 + (–b – a + c)x + (–b + d)
Samakan koefisien ruas kiri dan ruas kanan:
x3 → 2 = 2a → a = 2/2 = 1
x2 → –3 = 2b – a → 2b = –3 + a = –3 + 1 = –2 → b = –2/2 = –1
x → 1 = –b – a + c → c = 1 + b + a = 1 – 1 + 1 → c = 1
Konstanta → 5 = –b + d → d = 5 + b = 5 – 1 → d = 4
Jadi:
H(x) = ax + b = 1.x – 1 = x – 1
S(x) = cx + d = 1.x + 4 = x + 4

Teorema Faktor

Suatu suku banyak F(x) mempunyai faktor (x – k) jika F(k) = 0 (sisanya jika dibagi dengan (x – k) adalah 0)
Catatan: jika (x – k) adalah faktor dari F(x) maka k dikatakan sebagai akar dari F(x)
Tips:
  1. Untuk mencari akar suatu suku banyak dengan cara Horner, dapat dilakukan dengan mencoba-coba dengan angka dari faktor-faktor konstantanya ang akan memberikan sisa = 0
  2. Jika jumlah koefisien suku banyak = 0, maka pasti salah satu akarnya adalah x = 1
  3. Jika jumlah koefisien suku di posisi genap = jumlah koefisien suku di posisi ganjil, maka pasti salah satu akarnya adalah x = –1
Contoh:
Tentukan penyelesaian dari x3 – 2x2 – x + 2 = 0
Faktor-faktor dari konstantanya, yaitu 2,  adalah ±1 dan ±2
Karena jumlah seluruh koefisien + konstantanya = 0 (1 – 2 – 1 + 2 = 0), maka, pasti x = 1 adalah salah satu faktornya, jadi:

Jadi x3 – 2x2 – x + 2 = (x – 1)(x2 – x – 2)
= (x – 1)(x – 2)(x + 1)
x = 1   x = 2   x = –1
Jadi himpunan penyelesaiannya: {–1, 1, 2}

Sifat Akar-Akar Suku Banyak

Pada persamaan berderajat 3:
ax3 + bx2 + cx + d = 0 akan mempunyai akar-akar x1, x2, x3
dengan sifat-sifat:
  • Jumlah 1 akar: x1 + x2 + x3 = – b/a
  • Jumlah 2 akar: x1.x2 + x1.x3 + x2.x3 = c/a
  • Hasil kali 3 akar: x1.x2.x3 = – d/a
Pada persamaan berderajat 4:
ax4 + bx3 + cx2 + dx + e = 0 akan mempunyai akar-akar x1, x2, x3, x4
dengan sifat-sifat:
  • Jumlah 1 akar: x1 + x2 + x3 + x4 = – b/a
  • Jumlah 2 akar: x1.x2 + x1.x3 + x1.x4 + x2.x3 + x2.x4 + x3.x4 = c/a
  • Jumlah 3 akar: x1.x2.x3 + x1.x2.x4 + x2.x3.x4 = – d/a
  • Hasil kali 4 akar: x1.x2.x3.x4 = e/a
Dari kedua persamaan tersebut, kita dapat menurunkan rumus yang sama untuk persamaan berderajat 5 dan seterusnya
(amati pola:  –b/a, c/a, –d/a , e/a, …)

Pembagian Istimewa

suku banyak

Bentuk Umum:

an xn + an – 1 xn – 1 + an – 2 xn – 2 + … + … a2x2 + a1x + a0
n = derajat suku banyak
a0 = konstanta
an, an – 1, an – 2, … = koefisien dari xn, xn – 1, xn – 2, …

Pembagian Suku Banyak

Bentuk Umum
F(x) = P(x).H(x) + S(x)
F(x) = suku banyak
P(x) = pembagi
H(x) = hasil bagi
S(x) = sisa
Teorema Sisa:
Jika suatu suku banyak F(x) dibagi oleh (x – k) maka sisanya adalah F(k)
Jika pembagi berderajat n maka sisanya berderajat n – 1
Jika suku banyak berderajat m dan pembagi berderajat n, maka hasil baginya berderajat m – n
Cara Pembagian Suku Banyak
Contoh:
F(x) = 2x3 – 3x2 + x + 5 dibagi dengan P(x) = 2x2 – x – 1
1. Pembagian biasa

Jadi hasil baginya: H(X) = x – 1, sisanya S(x) = x + 4
2. Cara Horner/Skema
bisa digunakan untuk pembagi berderajat 1 atau pembagi yang dapat difaktorkan menjadi pembagi-pembagi berderajat 1
Cara:
  • Tulis koefisiennya saja → harus runtut dari koefisien xn, xn – 1, … hingga konstanta (jika ada variabel yang tidak ada, maka koefisiennya ditulis 0)
Contoh: untuk 4x3 – 1, koefisien-koefisiennya adalah 4, 0, 0, dan -1 (untuk x3, x2, x, dan konstanta)
  • Jika koefisien derajat tertinggi P(x) ≠ 1, maka hasil baginya harus dibagi dengan koefisien derajat tertinggi P(x)
  • Jika pembagi dapat difaktorkan, maka:
Jika pembagi dapat difaktorkan menjadi P1 dan P2, maka S(x) = P1.S2 + S1
Jika pembagi dapat difaktorkan menjadi P1, P2, P3, maka S(x) = P1.P2.S3 + P1.S2 + S1
Jika pembagi dapat difaktorkan menjadi P1, P2, P3, P4, maka S(x) = P1.P2.P3.S4 + P1.P2.S3 + P1.S2 + S1
dan seterusnya
Untuk soal di atas,
P(x) = 2x2 – x – 1 = (2x + 1)(x – 1)
P1: 2x + 1 = 0 → x = –½
P2: x – 1 = 0 → x = 1
Cara Hornernya:

H(x) = 1.x – 1 = x – 1
S(x) = P1.S2 + S1 = (2x + 1).1/2 + 7/2 = x + ½ + 7/2 = x + 4
3. Cara koefisien tak tentu
F(x) = P(x).H(x) + S(x)
Untuk soal di atas, karena F(x) berderajat 3 dan P(x) berderajat 2, maka
H(x) berderajat 3 – 2 = 1
S(x) berderajat 2 – 1 = 1
Jadi, misalkan H(x) = ax + b dan S(x) = cx + d
Maka:
2x3 – 3x2 + x + 5 = (2x2 – x – 1).(ax + b) + (cx + d)
Ruas kanan:
= 2ax3 + 2bx2 – ax2 – bx – ax – b + cx + d
= 2ax3 + (2b – a)x2 + (–b – a + c)x + (–b + d)
Samakan koefisien ruas kiri dan ruas kanan:
x3 → 2 = 2a → a = 2/2 = 1
x2 → –3 = 2b – a → 2b = –3 + a = –3 + 1 = –2 → b = –2/2 = –1
x → 1 = –b – a + c → c = 1 + b + a = 1 – 1 + 1 → c = 1
Konstanta → 5 = –b + d → d = 5 + b = 5 – 1 → d = 4
Jadi:
H(x) = ax + b = 1.x – 1 = x – 1
S(x) = cx + d = 1.x + 4 = x + 4

Teorema Faktor

Suatu suku banyak F(x) mempunyai faktor (x – k) jika F(k) = 0 (sisanya jika dibagi dengan (x – k) adalah 0)
Catatan: jika (x – k) adalah faktor dari F(x) maka k dikatakan sebagai akar dari F(x)
Tips:
  1. Untuk mencari akar suatu suku banyak dengan cara Horner, dapat dilakukan dengan mencoba-coba dengan angka dari faktor-faktor konstantanya ang akan memberikan sisa = 0
  2. Jika jumlah koefisien suku banyak = 0, maka pasti salah satu akarnya adalah x = 1
  3. Jika jumlah koefisien suku di posisi genap = jumlah koefisien suku di posisi ganjil, maka pasti salah satu akarnya adalah x = –1
Contoh:
Tentukan penyelesaian dari x3 – 2x2 – x + 2 = 0
Faktor-faktor dari konstantanya, yaitu 2,  adalah ±1 dan ±2
Karena jumlah seluruh koefisien + konstantanya = 0 (1 – 2 – 1 + 2 = 0), maka, pasti x = 1 adalah salah satu faktornya, jadi:

Jadi x3 – 2x2 – x + 2 = (x – 1)(x2 – x – 2)
= (x – 1)(x – 2)(x + 1)
x = 1   x = 2   x = –1
Jadi himpunan penyelesaiannya: {–1, 1, 2}

Sifat Akar-Akar Suku Banyak

Pada persamaan berderajat 3:
ax3 + bx2 + cx + d = 0 akan mempunyai akar-akar x1, x2, x3
dengan sifat-sifat:
  • Jumlah 1 akar: x1 + x2 + x3 = – b/a
  • Jumlah 2 akar: x1.x2 + x1.x3 + x2.x3 = c/a
  • Hasil kali 3 akar: x1.x2.x3 = – d/a
Pada persamaan berderajat 4:
ax4 + bx3 + cx2 + dx + e = 0 akan mempunyai akar-akar x1, x2, x3, x4
dengan sifat-sifat:
  • Jumlah 1 akar: x1 + x2 + x3 + x4 = – b/a
  • Jumlah 2 akar: x1.x2 + x1.x3 + x1.x4 + x2.x3 + x2.x4 + x3.x4 = c/a
  • Jumlah 3 akar: x1.x2.x3 + x1.x2.x4 + x2.x3.x4 = – d/a
  • Hasil kali 4 akar: x1.x2.x3.x4 = e/a
Dari kedua persamaan tersebut, kita dapat menurunkan rumus yang sama untuk persamaan berderajat 5 dan seterusnya
(amati pola:  –b/a, c/a, –d/a , e/a, …)

Pembagian Istimewa

logarithma

Sifat-Sifat Logaritma

Tentunya masih ingat kan, pada postingan sebelumnya, Logaritma bagian 1 , telah dijelaskan sekilas tentang sifat-sifat logaritma. pada kesempatan kali ini, saya akan coba bahas tentang sifat-sifat logaritma secara lebih detail.

Ada 7 sifat pada logaritma ini yang akan membantu kamu dalam memecahkan masalah yang berkaitan dengan logaritma, yaitu :

Sifat 1
alog x + alog y = alog xy
Contoh :
Sederhanakanlah !
a. 2log 4 + 2log 8
b. 3log (1/9) + 3log 81
c. 2log 2 + 2log 4
Jawab :
a. 2log 4 + 2log 8 = 2log 4 . 8 = 2log 32 = 5
b. 3log (1/9) + 3log 81= 3log (1/9). 81 = 3log 9 = 2
c. 2log 2 + 2log 4 = 2log 2 .4 = 2log 16 = 4

Sifat 2
alog x – alog y = alog (x/y)
Contoh:
Sederhanakanlah!
a. 2log 16 – 2 log 8
b. log 1.000 – log 100
c. 3log 18 – 3log 6
Jawab :
a. 2log 16 – 2 log 8 = 2log (16/8) = 2log 2 = 1
b. log 1.000 – log 100 = log (1000/100) = log 10 = 1
c. 3log 18 – 3log 6 = 3log (18/6) = 3log 3 = 1

Sifat 3
alog xn = n . alog x
Contoh :
Sederhanakan!
a. 2 log 3 + 4 log 3
b. 2 log a + 2 log b
Jawab:
a. 2 log 3 + 4 log 3 = log 32 + log 34
= log 9 + log 81
= log 9 . 81
= log 729

b. 2 log a + 2 log b = log a2 + log b2
= log a2 . b2
= log (ab)2


Ingat :
1. log 2x = log x . log x = (log x)2
log x2 = 2 log x
Jadi log 2x ≠ log x2

2. Log -1x = (1/log x)
Log x-1 = log (1/x) = -log x
Jadi log -1x ≠ log x-1



Sifat 4
alog b x blog c = alog c
Contoh :
a. 3log 7 x 7log 81 = 3log 81 = 3log 34 = 4
b. 2log 5 x 5log 32 = 2log 32 = 2log 25 = 5

Sifat 5

Contoh :
3log 7 x 7log 81
Jawab :




Sifat 6
a alog x = x
Contoh :
a. 55log 8
b. 42log 3
c. 93log 4
Jawab :
a. 55log 8 = 8
b. 42log 3 = 22.2log 3 = 22log 32 = 9
c. 93log 4 = 32.3log 4 = 33log 42 = 16

Sifat 7
anlog bm = (n/m)alog b
Untuk a dan b bilangan real positif, dan a ≠ 1

Contoh :
Hitunglah !
1. 4log 32
2. 8log 64
3. Jika 3log 5 = a hitunglah 25log 27
Jawab :
1. 4log 32 = 22log 25= 5/2
2. 16log 64 = 24log 26= 6/4 = 3/2
3. 25log 27 = 52log 33= (3/2)5log 3 = 3/2a

Logarithma

Basis

Basis yang sering dipakai atau paling banyak dipakai adalah basis 10, e≈ 2.71828... dan 2.

Notasi

  • Di Indonesia, kebanyakan buku pelajaran Matematika menggunakan notasi blog a daripada logba. Buku-buku Matematika berbahasa Inggris menggunakan notasi logba
  • Beberapa orang menulis ln a sebagai ganti elog a, log a sebagai ganti 10log a dan ld a sebagai ganti 2log a.
  • Pada kebanyakan kalkulator, LOG menunjuk kepada logaritma berbasis 10 dan LN menunjuk kepada logaritma berbasis e.
  • Pada beberapa bahasa pemrograman komputer seperti C,C++,Java dan BASIC, LOG menunjuk kepada logaritma berbasis e.
  • Terkadang Log x (huruf besar L) menunjuk kepada 10log x dan log x (huruf kecil L) menunjuk kepada elog x.

Mencari nilai logaritma

Cara untuk mencari nilai logaritma antara lain dengan menggunakan:

Rumus

Logaritma

ac = b → ª log b = c
a = basis
b = bilangan yang dilogaritma
c = hasil logaritma
Sifat-sifat Logaritma
ª log a = 1
ª log 1 = 0
ª log aⁿ = n
ª log bⁿ = n • ª log b
ª log b • c = ª log b + ª log c
ª log b/c = ª log b – ª log c
ªˆⁿ log b m = m/n • ª log b
ª log b = 1 ÷ b log a
ª log b • b log c • c log d = ª log d
ª log b = c log b ÷ c log a

Kegunaan logaritma

Logaritma sering digunakan untuk memecahkan persamaan yang pangkatnya tidak diketahui. Turunannya mudah dicari dan karena itu logaritma sering digunakan sebagai solusi dari integral. Dalam persamaan bn = x, b dapat dicari dengan pengakaran, n dengan logaritma, dan x dengan fungsi eksponensial.

Sains dan teknik

Dalam sains, terdapat banyak besaran yang umumnya diekspresikan dengan logaritma. Sebabnya, dan contoh-contoh yang lebih lengkap, dapat dilihat di skala logaritmik.
  • Negatif dari logaritma berbasis 10 digunakan dalam kimia untuk mengekspresikan konsentrasi ion hidronium (pH). Contohnya, konsentrasi ion hidronium pada air adalah 10−7 pada suhu 25 °C, sehingga pH-nya 7.
  • Satuan bel (dengan simbol B) adalah satuan pengukur perbandingan (rasio), seperti perbandingan nilai daya dan tegangan. Kebanyakan digunakan dalam bidang telekomunikasi, elektronik, dan akustik. Salah satu sebab digunakannya logaritma adalah karena telinga manusia mempersepsikan suara yang terdengar secara logaritmik. Satuan Bel dinamakan untuk mengenang jasa Alexander Graham Bell, seorang penemu di bidang telekomunikasi. Satuan desibel (dB), yang sama dengan 0.1 bel, lebih sering digunakan.
  • Dalam astronomi, magnitudo yang mengukur terangnya bintang menggunakan skala logaritmik, karena mata manusia mempersepsikan terang secara logaritmik.

Penghitungan yang lebih mudah

Logaritma memindahkan fokus penghitungan dari bilangan normal ke pangkat-pangkat (eksponen). Bila basis logaritmanya sama, maka beberapa jenis penghitungan menjadi lebih mudah menggunakan logaritma::
Penghitungan dengan angka Penghitungan dengan eksponen Identitas Logaritma
 \!\, a b  \!\, A + B  \!\, \log(a b) = \log(a) + \log(b)
 \!\frac{a}{b}  \!\, A - B  \!\, \log(\frac{a}{b}) = \log(a) - \log(b)
 \!\, a ^ b  \!\, A b  \!\, \log(a ^ b) = b \log(a)
 \!\, \sqrt[b]{a}  \!\, \frac{A}{b}  \!\, \log(\sqrt[b]{a}) = \frac{\log(a)}{b}
Sifat-sifat di atas membuat penghitungan dengan eksponen menjadi lebih mudah, dan penggunaan logaritma sangat penting, terutama sebelum tersedianya kalkulator sebagai hasil perkembangan teknologi modern.
Untuk mengkali dua angka, yang diperlukan adalah melihat logaritma masing-masing angka dalam tabel, menjumlahkannya, dan melihat antilog jumlah tersebut dalam tabel. Untuk mengitung pangkat atau akar dari sebuah bilangan, logaritma bilangan tersebut dapat dilihat di tabel, lalu hanya mengkali atau membagi dengan radix pangkat atau akar tersebut.

Kalkulus

Turunan fungsi logaritma adalah
\frac{d}{dx} \log_b(x) = \frac{1}{x \ln(b)} = \frac{\log_b(e)}{x}
dimana ln adalah logaritma natural, yaitu logaritma yang berbasis e. Jika b = e, maka rumus di atas dapat disederhanakan menjadi
\frac{d}{dx} \ln(x) = \frac{1}{x}.
Integral fungsi logaritma adalah
\int \log_b(x) \,dx = x \log_b(x) - \frac{x}{\ln(b)} + C = x \log_b \left(\frac{x}{e}\right) + C
Integral logaritma berbasis e adalah
\int \ln(x) \, dx= x \ln(x) - x + C\,
Sebagai contoh carilah turunan
\log(x)

Penghitungan nilai logaritma

Nilai logaritma dengan basis b dapat dihitung dengan rumus dibawah ini.
 \log_b(x) = \frac{\log_e(x)}{\log_e(b)} \qquad \mbox{ atau } \qquad \log_b(x) = \frac{\log_2(x)}{\log_2(b)}
Sedangkan untuk logaritma berbasis e dan berbasis 2, terdapat prosedur-prosedur yang umum, yang hanya menggunakan penjumlahan, pengurangan, pengkalian, dan pembagian.

Tugas TIK Kelas XII IPA 4

Tugas TIK Kelas XII IPA 4


Nama : MEI RUSFANDI
Kelas : XII IPA 4
TUGAS COREL DRAW XII IPA 4
1. Apa yang dimaksud dengan corelDRAW?
2. Apa fungsi dari toolbox ?
3. Apa yang dimaksud dengan Property bar?
4. Buatlah tabel perbedaan vektor dan bitmap (MINIMAL 4 PERBEDAAN)?
5. Apa yang disebut dengan docker?
6. Sebutkan Program-program yang Berbasis BITMAP …!
7. Sebutkan Program-program yang Berbasis VEKTOR …!
8. Apakah yang dimaksud dengan :
a. TRIM
b. WELD
c. INTERSECT
d. GROUP
e. DUPLICAT
f. SIMPLIFY

Jawaban :

  1. Corel Draw adalah suatu piranti lunak komputer yang digunakan untuk menggambar, membuat logo, edit foto menjadi bitmap, edit foto menjadi gambar kartun, desain kaos, dan semua yang berhubungan dengan grafis dan coret-coretan yang menghasilkan kreasi gambar yang menarik.
  2. Fungsi toolbox adalah untuk membuat dan mengedit gambar, memodivikasi, memperindah suatu objek.
  3. Property bar adalah baris perintah yang unik, karena tampilannya akan selalu berubah dan icon-icon yang ada didalamnya pun akan menyesuaikan dengan icon yang sedang aktif pada tool box.


Gambar Vektor
Gambar Bitmap
  1. Gambar berupa garis
Gambar berupa pixel
  1. Resolusi Independent
Resolusinya Dependent
  1. Ukuran penyimpanan kecil
Ukuran penyimpanan besar
  1. Gambar tetap jelas saat diperbesar
Gambar tidak jelas saat diperbesar

  1. Docker yaitu Sistem meletakkan sejumlah kotak dialog fasilitas yang (dianggap) sering digunakan dalam bentuk tetap pada sisi kanan kotak dialog. Format tersebut disebut dengan docker. Fasilitas ini dapat ditampilkan melalui menu window submenu docker.
  2. Program berbasis Bitmap adalah Adobe Photoshop, Corel Photopaint, Microsoft Photo Editor dan Macromedia Fireworks.
  3. Program berbasis Vektor adalah CorelDraw, Macromedia Free Hand, Adobe Ilustrator dan Micrografx Designer.
  4. A. Trim yaitu teknik yang digunakan untuk memangkas atau memotong  objek dengan objek lain. Objek yang pertama kali dipilih akan menjadi pemotong.
B. Weld yaitu teknik yang digunakan untukuntuk menggabungkan dua objek atau lebih dan warna hasil penggabungannya akan sesuai dengan warna objek yang terpilih.
C. Intersect yaitu pembuat irisan dari objek yang bertumpuk. Hasil irisan tersebut merupakan bagian dari objek satu dan yang lainnya.
D. Group yaitu menggabungkan 2 objek atau lebih menjadi 1 objek yang saling berhubungan.
E. Duplicat yaitu menggandakan suatu objek agar menjadi lebih dari satu.
F. Simpfly yaitu hampir mirip dengan Trim, namun Simplify dapat digunakan dengan banyak objek.

kumpulan soal OSP

KUMPULAN SOAL OLIMPIADE SAINS BIDANG KOMPUTER TINGKAT SMA
PROVINSI :

SOAL TAHUN 2012 :  download
SOAL TAHUN 2011 :  download
SOAL TAHUN 2010 :  download
SOAL TAHUN 2009 :  download
SOAL TAHUN 2008 :  download
SOAL TAHUN 2007 :  download
SOAL TAHUN 2006 :  download

silahkan bagi yang ingin mendownload, masih banyak materi yang lain lagi, jangan lupa sering-sering mengunjungi blog ini :) :) :)

SOAL-SOAL OSK

KUMPULAN SOAL OLIMPIADE SAINS BIDANG KOMPUTER TK. SMA
KABUPATEN :

SOAL TAHUN 2006 :  download
SOAL TAHUN 2007 :  download
SOAL TAHUN 2008 :  download
SOAL TAHUN 2009 :  download
SOAL TAHUN 2010 :  download
SOAL TAHUN 2011 :  download
SOAL TAHUN 2012 :  download
SOAL TAHUN 2013 :  download

silahkan bagi yang ingin mendownload, jangan lupa sering-sering berkunjung ke blog ini lagi :) :) :)